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The objective of this work is to train an artificial neural network (ANN) to predict the performance of gas
cooler in carbon dioxide transcritical air-conditioning system. The designed ANN was trained by perfor-
mance test data under varying conditions. The deviations between the ANN predicted and measured data
are basically less than ±5%. The well-trained ANN is then used to predict the effects of the five input
parameters individually. The predicted results show that for the heat transfer and CO2 pressure drop
the most effective factor is the inlet air velocity, then come the inlet CO2 pressure and temperature.
The inlet mass flow rate can enhance heat transfer with a much larger CO2 pressure drop penalty. The
most unfavorable factor is the increase in the inlet air temperature, leading to the deterioration of heat
transfer and severely increase in CO2 pressure drop.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As the global warming potential (GWP) value of most of HFCs is
still high, the application of HFC refrigerants in a refrigeration or
heat pump system cannot solve the green house problem com-
pletely [1]. Typically, a release of 1 kg of an HFC gas contributes
1000–3000 times more to global warming than the release of
1 kg CO2 [2]. This is the reason why HFC refrigerants are included
in the Kyoto-agreement as compounds to be regulated. Due to
the carbon dioxide’s outstanding thermodynamic, transport, and
other environmentally friendly properties [3], it has being investi-
gated ever-increasingly as an alternative to CFC and HFC refriger-
ants since the publication of Lorentzen’s paper [2].

Heat pump is one of the CO2 application areas where theoretical
and experimental investigations are now performed by an increas-
ing number of research institutions and manufacturers [2,4–10].
Great achievements have been obtained, and the remaining issues
are to improve the energy utilization efficiency and reduce the cost
of the systems to an acceptable level. Different kinds of heat pumps
applying CO2 as the working fluid are investigated both in theoret-
ical analysis and in laboratory experimental measurement [2,7–
10]. Within all the thermodynamic cycles, the transcritical CO2 cy-
cle has been well known for a long time and was revisited by
Lorentzen and Pettersen [2,4].

One way to increase the transcritical CO2 system efficiency is to
improve heat transfer performance of the gas cooler. This is because
ll rights reserved.
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the system capacity can be maximized by reducing the refrigerant
temperature at the gas cooler exit to approach the ambient temper-
ature, while keeping the refrigerant side pressure drop in the gas
cooler at an acceptable level. In such CO2 system, the operating pres-
sures range from sub-critical to 150 bar, and the thermophysical
properties vary strongly in the critical region, where specific heat ap-
proaches infinity. Cycle COP is very sensitive to the gas cooler outlet
state. In an actual cycle, the refrigerant temperature at the gas cooler
exit changes with different operating conditions, and a good design
of gas cooler can bring it closer to the ambient temperature.

An analysis of the thermal resistance through the overall heat
transfer of the gas cooler reveals that the dominant thermal resis-
tance for an air-cooled heat exchanger is generally on the airside,
which may account for 85% or more of the total resistance. As a re-
sult, to effectively improve the thermal performance and to signif-
icantly reduce the size and weight of air-cooled heat exchangers,
airside enhanced surface geometries are often encountered in
practical applications. And the plate fin-and-tube surfaces are the
most widely-used ones. Among many types of plate fin-and-tube
heat transfer surfaces, the wavy-fin is one of the widely-used en-
hanced configurations. The wavy surface can lengthen the path
of the airflow and cause better airflow mixing. Consequently, high-
er heat transfer performance is expected compared with a plain
plate fin surface. Many investigations, both experimental and
numerical, have been conducted for the heat exchangers with
fin-and-tube surface of wavy type. In [11,12] reviews and
experimental results of friction factor and heat transfer coefficient
are presented for the wavy-type fin surfaces. For the simplicity of
presentation we will not go into the details of this subject.
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Nomenclature

f data
MRE mean relative error
d output for exemplars
_m CO2 mass flow rate

N number of sets of data for testing network; number of
exemplars

p pressure
P number of the output processing elements
Q heat transfer rate
rms root mean-squares error
T temperature
v velocity

y network output for exemplars
Dp pressure drop in tube side
DT temperature difference

Subscripts
e experimental
in inlet
out outlet
p predicted
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However, heat exchangers are complex devices. The complexi-
ties of heat exchangers come from their geometrical configurations
and manufacturing technologies. Even for the same design, the
minor differences in manufacturing technologies may lead to prod-
ucts whose outer appearance looks like the same but many details
are actually different. For example, the sharpness of the wavy crest
and trough may different which affects the heat transfer and pres-
sure drop characteristics. As such the experimental correlations are
useful tools for a general design but actual heat transfer and pres-
sure drop characteristics still should be measured individually
after the heat exchanger had been manufactured. This is especially
important for a batch of products in order to have a general under-
standing of their thermal performance within a wide range of
parameter variation. Since experimental study is usually cost-
expensive, it is important that from limited number of test data
we can have a quite comprehensive understanding of the heat ex-
changer performance. In this regard, the artificial neural network
(ANN) method is a useful tool.

Take the gas cooler in the CO2 system as an example. For a given
CO2 gas cooler, its major output parameters are outlet air temper-
ature, outlet CO2 temperature, CO2 pressure drop and airside pres-
sure drop. The five input parameters are inlet air temperature and
velocity, input CO2 temperature, pressure, and mass flow rate.
From engineering operation point of view the most important out-
put parameters are the heat transfer rate and the CO2 pressure
drop. In order to have a general understanding of how the five in-
put parameters may affect the two output quantities for a given
gas cooler with a limited number of test data, the ANN method
may be adopted. In general, ANN is widely-used in function esti-
mation since it is able to estimate virtually any function in a stable
and efficient manner [13–20]. Therefore, it is expected that the
ANN approach can predict the major performance of gas cooler
at random input conditions without too many experiment
measurements.

The rest of this paper is organized as follows. First a brief intro-
duction to the CO2 heat pump experiment system set up in the
authors’ lab and the type of gas cooler are presented, followed by
the presentation of some typical measurement heat transfer and
friction factor data of the gas cooler. Then the process of obtaining
an adequate ANN is briefly introduced, and the trained ANN is used
to predict the two major output quantities for a systematic varia-
tion of the five input parameters. Finally some conclusions are
drawn.

2. Experimental equipment and range of parameters

The experimental trancritical heat pump system of CO2 was built
in 2005 in the authors’ lab according to the modifications to the ba-
sic air-conditioning cycle proposed by Lorentzen and Pettersen
[2,4]. Additional components are shown in Fig. 1a, including the
control elements to regulate the system’s operating conditions.
The operating condition can be regulated in two ways. In one meth-
od of control, the suction gas temperature is controlled by the low-
pressure receiver added just after the evaporator (see Fig. 1a),
which will ensure very little superheat of the suction gas by storing
liquid and allowing only vapor to enter the compressor. The other
control means are for the high pressure and the mass flow rate.
The manual electronic expansion valve and the manual control con-
verter of the compressor control the high-side pressure and CO2

mass flow rate. The function of the oil separator is to purify the
CO2 flow in the system and to realize high heat transfer coefficients
inside tube. A safety relief valve is used to protect the system from
too high pressure in emergency. Also connected to the system are
the following test instruments: temperature transmitters (T, speci-
fication: ±0.2 �C), pressure transducers (PT, specification: 0.075%),
differential pressure transducers (specification: ±0.075%), and mi-
cro-motion mass flow meter (specification: ±0.50%).

In the experimental system 3-row staggered wavy-fin heat ex-
changer is employed as gas cooler. The gas cooler is set in a wind-
duct with a cross section of 340 � 640 mm2. In the wind-duct, as
shown in Fig. 1b, there are a heater, a grid at the duct inlet, three
thermopiles (for the air outer temperature and temperature differ-
ence, specification: ±0.2 �C), and an air mass flow meter(specifica-
tion: ±1.0%). The heater is used to adjust the inlet air temperature.
The grid is used to create a uniform airflow. A frequency converter
is also equipped to adjust the fan speed for altering the airflow rate.
The air duct is constructed with plastics and packed with thermal
insulation material. The room air is pumped into the duct by centrif-
ugal blower positioned at the end of the duct (not shown in Fig. 1b).
During system operation, through altering the inlet air temperature
and velocity, the performance of gas cooler and system are tested.

During the experimental procedure a number of parameters are
changed systematically. These include: the gas cooler inlet CO2

pressures ranged from 7.5 to 10.5 MPa, the gas cooler inlet CO2 tem-
peratures from 78 to 104 �C, the CO2 mass flow rate from 0.75 to
1.30 kg/min, the air inlet temperature from 25 to 45 �C, and the
air inlet velocity from 0.5 to 2.5 m/s. The objective of the present
experimental series is to test the performance of the wavy-fin gas
cooler and training an artificial neural networks to predict the ma-
jor performance of gas cooler: how the five input parameters affect
the two major output parameters. With this trained ANN the effects
of the inlet parameters on the heat transfer rate and the pressure
drop of CO2 will be investigated systematically.

3. Artificial neural network

Before presenting the training of our artificial neural network,
two related issues showing the significance of the ANN technique
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Fig. 1. Experimental system for testing gas cooler performance.

Z.G. Wu et al. / International Journal of Heat and Mass Transfer 51 (2008) 5459–5464 5461
will be presented. In Fig. 2a, the lumped parameter physical model
of the CO2 heat exchanger is presented. For a given heat exchanger,
when the five input parameters shown in the figure are given, a un-
ique output of the four parameters can be obtained. However, the
functional relationships inherently included within the nine
parameters can not be obtained via straightforward mathematic
functions [18,19]. And the relationships about the nine parameters
within the full heat exchanger are definitely different from both
the relationships among Re, Nu and f for the airside fin pattern
studied and relationships among Re, Nu and f for the CO2-side. It
is at this point that the artificial neural network technique may
play a significant role.

A further notable character of the ANN technique is the possibil-
ity of showing the effect of changing one input parameter on the
four output parameters while keeping the other four input param-
eters constant. Such variation trend may be obtained by experi-
mental measurement through fixing four input parameters and
varying the fifth one. However, this kind of experiment is very dif-
ficult to carry out. For example, when the inlet air velocity for gas
cooler changes, all the operational parameters of CO2 system will
change subsequently. Thus to keep the other four inlet parameters
constant, the test facility must be adjusted in a complicated way,
and sometime even can not reach the required test condition.
As indicated above the artificial neural network method is good
at many-to-many relationship analysis [13]. Through training and
testing the designed ANN by measurements data, the trained ANN
can predict the performance of gas cooler. Fig. 2b illustrates a typ-
ical full-connected network configuration. Such an ANN consists of
a series of layers with a number of nodes. As one of the most
widely implemented neural network topologies, in this paper,
the multilayer perceptron (MLP) [13] is employed. When the
MLP model is applied to forecast the performance of the gas cooler,
it can reveal the highly nonlinear relationship between the five in-
put parameters and four output parameters, by searching an opti-
mal weight in its weighting space. The optimal weights of MLP
model store the information, which can best represent such highly
nonlinear relationships. Mathematically, searching the optimal
weight or training the MLP model aims to minimize a cost function
with respect to the training data set. The mathematical back-
ground, the details of training and testing the ANN can be found
in [13,21,22] and will not be represented here for simplicity.

The authors conducted more than 450 heat transfer perfor-
mance measurement experiments with the inlet parameters vary-
ing in a wide range indicated in Section 2. For all the selected data
the heat balance of gas cooler between airside and CO2 side is with-
in 5%. In developing an ANN model the test data are divided into
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Fig. 2. Physical and ANN model for prediction.

Table 1
Selected experiment data for testing the trained ANN (Five input parameters)

Case pin;CO2
ðMPaÞ T�in;CO2

C _mCO2 ðkg=minÞ vair (m/s) Tin,air �C

1 9.02 95.68 0.944 1.39 33.23
2 8.94 93.28 0.995 1.39 33.27
3 9.07 97.77 0.921 1.39 33.18
4 8.83 90.26 1.023 1.39 33.27
5 9.56 92.75 0.994 1.00 35.07
6 8.65 94.63 0.749 1.02 33.31
7 8.66 88.79 0.775 1.03 31.82
8 8.66 92.17 0.774 1.10 32.04
9 8.64 86.81 0.778 1.10 31.94

10 8.96 93.10 1.002 0.98 35.56
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two sets: one to be used for training the network and the rest for
test its performance. After input a number of the experimental data
the test of the ANN was performed with new measurement data. If
the deviation between prediction and measurement was larger
than an allowable percentage, push these measurement data for
training again and retesting by newer measurement data until
the deviation between new prediction and measurement data
was within ±5%. Totally, more than 350 experiment data were used
for training. Once the trained ANN is good enough, the perfor-
mance of gas cooler can be predicted without further validation
by measurement data.

During the training process, the performance of the neural net-
work was evaluated by calculating root mean square error (rms)
values of the output data [13]. The rms is defined as

rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
j¼0

PN
i¼0ðdi;j � yi;jÞ

2

N � P

s
ð1Þ

where, P is the number of the output processing elements; N is the
number of exemplars in the data set; yi,j is network output for
exemplars at processing elements j; and di,j is the output for exem-
plars at processing elements j. At the end of training process, the
rms is only 0.062. It makes sure that the trained ANN has satisfac-
tory performance within the trained data.

In Table 1 ten data at the input side of gas cooler are selected
from our measured results for testing the trained neural network.
In Table 2 the comparisons and the percentage deviations between
ANN predicted and measured results of the output side of gas cool-
er are presented. As shown in Table 2, the prediction is in good
agreement with experiment data. For most of the predicted output
data, the deviation is far less than 5%. Among 40 data, only 8 data
have their relative deviation larger than 5%, with the maximum
deviation being of 9.65% for the air temperature difference. And
mean relative error (MRE) is defined as

MRE ¼ 1
N

XN

i¼1

fi;p � fi;e

fi;e

����
���� ð2Þ

where, N is the number of the selected testing data, fi,p and fi,e are
the predicted value and the corresponding measurement data,
respectively. For these 40 data, MRE is 2.96%. Such an agreement
should be regarded satisfactory from engineering point of view.



Table 2
Comparison and deviation (%) between experiment and prediction

T�out;CO2
C DpCO2

ðkPaÞ Tout,air �C Q (W)

Case Exp Pre Dev Exp Pre Dev Exp Pre Dev Exp Pre Dev

1 38.15 38.16 0.01 175.9 175.6 0.20 41.70 42.01 �3.50 2781 2679 3.81
2 38.35 38.24 �0.21 186.1 188.0 �1.00 41.70 41.76 �0.63 2746 2636 4.20
3 38.08 38.11 0.05 171.7 170.6 0.63 41.74 42.24 �5.58 2805 2748 2.07
4 38.32 38.02 �0.57 193.7 197.6 �1.95 41.48 41.16 3.98 2610 2533 3.03
5 41.71 42.61 1.81 185.2 190.7 �2.85 46.03 45.71 3.03 2540 2373 7.03
6 38.09 37.97 �0.21 154.0 161.5 �4.64 41.64 41.36 3.47 1896 1993 �4.90
7 37.43 37.76 0.66 153.9 162.6 �5.34 40.49 39.81 8.51 2023 1949 3.76
8 37.37 37.48 0.19 154.2 161.7 �4.63 40.38 39.96 5.32 2093 2065 1.37
9 37.18 37.56 0.79 154.1 162.9 �5.40 40.04 39.33 9.65 2025 1925 5.20

10 40.98 41.71 1.42 203.0 207.0 �1.94 45.33 45.17 1.61 2182 2114 3.22

Note: The case numbers are correspondent to those in Table 1, and temperature deviations are calculated by (DTin,out,exp-DTin,out,pre)/DTin,out,exp-100%.
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4. Predicted effect of the five input parameters

Here, the trained ANN is adopted to predict the performance of
gas cooler when one of the five input data is a variable. The typical
predicted results are presented in Fig. 3. In this figure among the
five input parameters (pin;CO2

, T in;CO2 , _mCO2 , vair and Tin,air) only one
parameter: vair is changed systematically, and the corresponding
curves illustrate the two most important output parameters, pres-
sure drop of CO2 and heat transfer rate.

From Fig. 3 and other predicted results, the effects of the five in-
put parameters on the heat transfer rate and the pressure drop of
CO2 can be summarized as follows. For the heat transfer, the inlet
air velocity, the inlet CO2 temperature and pressure, and the CO2

mass flow rate have positive effects. While the inlet air tempera-
ture has negative effect. These effects can be well understood from
basic heat transfer theory. For example the increase in the inlet CO2

temperature leads to a larger overall temperature difference be-
tween air and CO2, thus enhancing the overall heat transfer pro-
cess. On the contrast, the increase in the inlet air temperature
decreases this overall temperature difference. Hence, the heat
transfer rate is reduced. As for the pressure drop of CO2, the in-
crease in the inlet air velocity, the inlet temperature of CO2 and
the inlet pressure of CO2 are all favorable to reduce the pressure
drop of CO2, while the increase in CO2 mass flow rate and temper-
ature will lead to the increase in pressure drop. These predicted re-
sults are not so straightforward and should be understood from a
comprehensive analysis of the overall process. Taking the effect
of the increase in the inlet air velocity as an example, the effect
of the inlet air velocity on the CO2 pressure drop can be understood
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as follows. In the overall heat transfer process, the air side thermal
resistance is dominated. Hence, the increase in the air velocity will
appreciably reduce the overall thermal resistance. Meanwhile, the
outlet air temperature will also be reduced, leading to some reduc-
tion in the outlet temperature of CO2. The reduction in the aver-
aged temperature of CO2 will decrease the CO2 density. At a fixed
mass flow rate, this will decrease the volumetric velocity of CO2,
hence the pressure drop will be decreased. The effects of the other
input parameters can be explained in a similar way, and for the
simplicity of presentation, detailed discussion is omitted here.

From Fig. 3 and above analysis, it is easily found that air velocity
is the most effective factor to the heat transfer performance of gas
cooler. A larger air velocity could both enhance the heat transfer
and reduce the pressure drop of CO2 inside tube. Next effective fac-
tors are the inlet CO2 pressure and temperature. These two param-
eters’ effects are not so large as that of air velocity, and they can
improve the performance of gas cooler quite appreciably. Though
increasing CO2 mass flow rate can increase heat transfer, it makes
the pressure drop increase more significant, leading to a more se-
vere working condition of the compressor. The most despondent
situation is the increase in the inlet air temperature.

5. Conclusion

This paper demonstrates the applicability and feasibility of the
artificial neural network (ANN) for estimating the performance of a
wavy-fin gas cooler in CO2 transcritical system. A well-trained and
tested ANN by a lot of measurement data is employed to predict its
performance at off-design conditions. Especially, the effect of the
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five input parameters (pin;CO2
, T in;CO2 , _mCO2 , vair and Tin,air) has been

examined individually by keeping the other four parameters con-
stant. The predicted results show that among the five parameters
the most effectively positive influence is the inlet air velocity, then
come the inlet CO2 pressure and temperature. The mass flow rate
of CO2 can also enhance heat transfer with a much bigger penalty
in pressure drop. The increase in the inlet air temperature will
deteriorate the heat transfer and increase the pressure drop of CO2.
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